Random Imperfections for
Dynamic Pulse Buckling®
By Herbert E. Lindberg!

ABSTRACT: White noise and wavelength-dependent random imper-
fections, each represented by Fourier series having random coefficients with
Gaussian distributions, are explored as representations of imperfections to
be used in numerical investigations of dynamic pulse buckling. Results from
a closed form solution show the relationship between these imperfections and
previously used single-mode imperfections, and demonstrate the statistics of
typical buckled forms. Example random imperfection shapes and growing
buckle forms show the advantage of using ‘gray’ noise (standard deviation o
of the coefficients decreases as n~1/?) rather than pure white-noise (constant
o) imperfections. The statistics of buckle amplitudes from buckled forms
with 15 or more waves are shown to give good estimates for the statistics
of a large population of random buckle shapes. This is an important result
for finite element calculations, in which Monte Carlo calculations would be
time consuming and expensive.

INTRODUCTION

A dominant mode of response in metal cylindrical shells under impulsive pressures
is dynamic pulse buckling into high order buckle modes with short wavelengths.
The dominant modes typically have 20 to more than 100 waves around the cir-
cumference, depending on the material and radius-to-thickness ratio of the shell.
These mode numbers must be determined as part of the solution to buckling re-
sponse. In closed form analyses (Lindberg & Anderson 1968) they have been found
by calculating response in a sequence of modes to find the most amplified mode.
Critical impulses for threshold buckling are then estimated by representing the
actual motion, which takes place in many amplified modes, by motion in only the
most amplified mode (Lindberg & Florence 1987).

With this procedure it is not necessary to provide a detailed description of the
imperfections that trigger buckling. It is enough to assume that random imperfec-
tions are present in all the modes, so that the buckle motion can selectively amplify
the critical mode into which the shell buckles. Imperfections are then represented
by an equivalent single imperfection in this mode. However, for more complex shell
geometries and loadings, solutions must be found by numerical methods. In the
finite element method with the shell descritized around the circumference, some
other means must be used to specify imperfections so the response analysis can
yield the buckle shape and critical impulse.

In this paper, it is proposed that the imperfections be taken as a nearly white
noise perturbation from a perfectly circular shape. This perturbation is described
by a Fourier series with random coefficients, each having a Gaussian distribution
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in amplitude with zero mean value and standard deviation o (n). The proposed
form for o is & = Chn~'/2, where C is a parameter determined in the paper by
comparison with experimental results and h is wall thickness. This form of depar-
ture from true white noise, in which o is constant for all wave numbers, is shown
to describe imperfections that are proportional to an appropriate combination of
the wall thickness and the wavelength of each buckling mode.

This specification gives imperfection coefficients that decrease conservatively
slowly with increasing n as compared with measurements on a limited number of
shells, and is more physically reasonable than a pure white noise description, which
gives a divergent series for the perturbation shape. The n=/? decrease in standard
deviation results in a nearly convergent series for the mean square deviation of
the imperfection shape; the exponent -1/2 is the separator between convergent and
divergent series.

Buckle shapes resulting from this imperfection description are calculated ana-
lytically at a sequence of increasing times. The resulting buckle shapes are com-
pared with imperfection shapes found by truncating the imperfection series at a
sequence of bandwidths ranging from a small fraction of the bandwidth of the
dynamic buckling amplification function to several times this bandwidth. These
examples give a physical feel for the imperfection form, the nature of its conver-
gence, and how it is modified by pulse buckling amplification.

Buckle forms are then calculated for a large number of random imperfection
shapes to determine the statistics of the amplitudes and wavelengths of the buckles.
It is shown that good estimates of the statistics of the universe of buckle shapes
can be obtained by calculating the statistics of the buckles in a single calculation.
This is an important result for use in finite element calculations, in which Monte
Carlo calculations for buckle statistics would be expensive and time consuming.

WHITE-NOISE AND SINGLE-MODE IMPERFECTIONS
Buckling from White Noise Imperfections

A mathematical analysis of random noise currents in electrical communication,
described in Rice 1954, is closely analogous to the analysis of buckle shapes in long
shells under radial impulse uniform around the circumference. We consider a shell
with a random shape imperfection given by

N

u;(0) =Y o, cosnb + 3, sinnb)] (1)

n=2

where # is angle around the circumference, n is mode number, the coefficients a,,
and (3, are random variables, each normally distributed with zero mean value and
standard deviation o, and N is an upper limit to be determined by the buckling
analysis. For clarity, we consider first that o is constant for all n, just as in Rice
1954. This is called ‘white noise,” by analogy to the electrical case in which wu;
would be current and ¢ would be time. Example imperfection shapes from Eq. (1)
are given in Section 3.



The resulting buckle shape is given by
N
u(®,7) = uo(T) + > _[an(T) cosnd + b,(7) sinnb) (2)
n=2

where 7 is a dimensionless time. The first term is the symmetric inward motion
from the symmetric impulse. The remaining terms are the growing flexural modes.
The term for n = 1 is omitted because, to the accuracy of the buckling theory
given in Lindberg & Anderson 1968 and Lindberg & Florence 1987, this term is a
rigid body translation. Example buckle shapes from Eq. (2) and their growth with
time are given later in the paper.

For the present, it is not necessary to be concerned with the details of any
particular buckling analysis except for the fundamental result that the buckle shape
coefficients a, (7) and b, (7) are expressed by the form

a, (1) = a,G(n,7), b, (1) = 6,G(n,T) (3)

where G(n,7) is an amplification function which, at times when buckle ampli-
tudes are observable, has significant values only over a band of modes in the range
2 <n < N. Thus, in Egs. (1) and (2) we have used an upper limit N because
higher modes have no significant growth. This is a crucial step in specifying the
imperfections in Eq. (1).

The mean square of the deformed shape (averaged over 6 at fixed 7) is

N
W2(r) = > [a2(7)cos® nd + b2 () sin® nd)
n=2

= o 2_22 G*(n,T) (4)

This result follows from the independence of a, and b, and the identity of their
distributions. From the central limit theorem for the sum of many independent
random variables, the distribution of u is also random normal with zero mean.
This suggests that experimental determination of the mean square of the deformed
buckle shape, u2(7), would give a statistical description of the deformed shape.

Note that the series in Eq. (4) converges because of the finite bandwidth of the
amplified modes. A similar series for the mean square of the initial imperfection
with o constant for all modes (white noise) does not converge as N — oo. In the
next section we suggest a physically motivated variation of o with n that gives a
convergent series for the imperfections themselves.

Specification of Random Imperfections

For finite element calculations, we propose that Eq. (1) be used to generate an
unstressed initial deformation. The values for a,, and [, are to be selected from
a population of random numbers with zero mean value and standard deviation
o. Then the series is summed to generate wu;(f). Element displacements are then
chosen to approximate this initial shape.



We have already mentioned that to specify random imperfections in the form
given by Eq. (1) we must specify the value of NV to be used in truncating the series.
In a finite element analysis, this selection goes hand in hand with the selection of
the element sizes such that the buckle wavelengths can be resolved. Both depend
on prior knowledge of the buckle wavelengths to be expected. The calculation
itself will select the buckle wavelengths that are amplified, so one could simply
take N large enough and the element size small enough to allow for any possible
wavelengths. However, the time and cost of the calculation increases rapidly with
the number of elements, so careful choices are necessary for N and the number
of elements required to resolve the corresponding wavelength. These choices can
be based on the solutions in Lindberg & Florence 1987 for simple loading and
geometry.

The other quantity to be specified is the magnitude of o. The choice of this
magnitude quantity in analogous to the choices made in Lindberg & Florence 1987
for equivalent single-mode imperfections in the most amplified mode. In both cases,
a reasonable approach is to base the choice on observed buckle deformations rather
than on an attempt to measure the actual imperfections. These imperfections are
extremely small and difficult to measure with good accuracy. Also, in practice these
are ‘equivalent’ initial shape imperfections, that account for a range of imperfection
sources, including those in wall thickness, material properties, prestresses, and so

forth.

Relationship Between White-Noise
and Single-Mode Imperfections

In Lindberg & Florence 1987 it was found that observed impulse thresholds for
buckling in shells, over a range of radius-to-thickness ratios from 20 to 200, were
reasonably well predicted by taking equivalent single-mode imperfections in the
most amplified mode equal to 1% of the wall thickness. The critical impulses for
buckling are relatively insensitive to the exact value of this imperfection because
of the exponential growth of the buckles with increasing impulse.

The value to be used for o in Eq. (1) can be made to correspond to this single-
mode imperfection by means of the statistical analysis in Rice 1954. Thus, for
imperfections concentrated in a single mode we have

u;(0) = 6, sinnd (5)
The buckle deformation is then simply
w(l,7) = 6, Gmax(7) sinnd (6)
in which G|,y is the maximum amplification found as described above. The mean
square of this deformation is

nf=2m
u?(t) = 82G2,.(7)- / sin® nf d(nf)
0
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The choice for o can now be made such that this mean square is the same as
the mean square given by Eq. (4) for random imperfections, with the result

N 62
2y G0, 7) = ZG(7)
n=2

or

6nGmax(7—)
25, G2(n,m) "

The above procedure assumes that the observed buckle statistic is the root mean
square of the deformation. The correspondence between theory and experiment in
Lindberg & Florence 1987 was actually based on the measured threshold plastic
bending or plastic flow buckle deformation at the largest peaks in response. Thus,
we should base the comparison between single-mode and random imperfections on
the distribution of peaks rather than on the mean square deformation.

Monte Carlo calculations later in the paper give the distribution of peak-to-peak
amplitudes of buckle shapes. Based on this distribution, a peak value selected from
a relatively large sample size (from 10 to 50 waves were typically observed in each
experiment) would be equal to about three times the rms value of deformation. If
we choose this value for comparison with the single-mode theory, then

(8)

g =

N 1/2
Unax = 30 [Z G2(n,7)1 9)

n=2

For the single-mode imperfection, tmax = 6,Gmax. These peak deformations are
equal for

o = — OnChmax(7) (10)

3y, @2n,7) "

Analytical Example

To determine the relationship between o and ¢, according to Eq. (8) or (10), we
must now specify the amplification function G(n, 7). Results given in Lindberg &
Florence 1987 demonstrate that the shape of this amplification as a function of
mode number is very nearly the same for both elastic and plastic-flow buckling
over a wide range of shell radius-to-thickness ratios. For our purpose here, we use
the equations from plastic-flow buckling in relatively thick-walled shells, for which
the amplification function is given by a simple analytic expression.

The equations of motion for this case, following an initial radial impulse uni-
form around the shell, were derived by Abrahamson and Goodier 1962 and also in
Lindberg & Florence 1987, with the result

w4 (1 + 82)U” + s2u +u= —S((I/h + u; + u;/) (11)
where 13
w w; ~ CpQk

w _w _ 12
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2
cp = E, s? = 0y2 o = h2

p Eia 12a

in which w(#, t) is radial deformation, positive inward, w;(f) is an initial unstressed
imperfection shape, ¢ is time, 7 is a dimensionless time, ¢, is plastic wave speed, E;
is the material tangent modulus, assumed for now to be constant beyond yield, p
is density, o, is yield stress, h is wall thickness, and a is shell radius. Note that the
dimensionless displacements u and u; are normalized by the wall thickness rather
than by the radius as in Abrahamson and Goodier 1962 and Lindberg & Florence
1987. Primes indicate differentiation with respect to # and dots with respect to 7.

Substitution of the series expansions

(13)

M=

u;(0) = (ay, cosnb + [, sinnh) (14)
n=2

N
u(0,7) = ao(1) + > _[an(7) cosnb + b, (7) sin nd] (15)

n=2

into equation of motion (11) gives
. . [ a

g + s <E+a0> =0 (16)
in + [n* —n*(1 + %) + s%a, = s*(n® — Day, (17)

A similar equation results for b,. Pulse buckling modes have n? > 1, so Eq. (17)
can be simplified to
in + s**(n* — Da, = s*n*a, (18)
where n = n/s.
The solution to Eq. (18) with initial conditions u(¢,0) = 4(6,0) = 0 is

an(7) = oy, l cosh - 1] (19)

1-— 772 cos

in which we have introduced a new dimensionless time 7 and an argument param-
eter p, defined by

T = §%7, P = |1 — 7"/ (20)

The cosh functions are taken for n < 1 and the cos functions for n > 1.

The function multiplying a,, in Eq. (19) is called the amplification function.
Fig. 1 gives an example of this function plotted against mode number n for 7 =6
and mode number parameter s = 20.67. This value results for an aluminum 6061-
T6 (o,/E; = 0.5) shell with radius-to-thickness ratio 8.4. This is a thicker shell
than normally of interest, but the value of s is convenient for numerical results
given later in the paper.

An important feature of the amplification function is that at values of 7 large
enough for significant amplification, a band of modes are amplified with mode
numbers ranging from somewhat below to somewhat above the value s. Neither
very low nor very high order modes are amplified significantly. Also, the shape
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Figure 1: Amplification Function from Equation (19) for 7 = 6.
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of the amplification function is independent of s, as can be seen from Eq. (19);
amplification depends only on n and 7. Furthermore, even in thinner shells, which
buckle during elastic or elastic-plastic radial motion, and for which the amplifica-
tion function must be found by numerical integration, the resulting amplification
function when plotted against a normalized wave number has essentially the same
shape as that of the analytical result here.

These two properties of the amplification function have important implications
for the results in this paper. The finite lower and upper mode number bounds and
the universal shape, taken together, allow a convenient definition (in Section 3)
of random imperfections that are proportional to an appropriate combination of
wall thickness and buckle wavelengths. The universal shape allows Monte Carlo
calculation of buckle waveform statistics that can be applied quite generally.

The relationship between white noise and equivalent single-mode imperfections
can now be calculated quite generally from Eqgs. (10) and (19). With G(n, 7) from
Eq. (19), the G terms in Eq. (10) can be expressed as

N 1/2
T ()| =) @)
where »
"0 =g o (o0 1) e

in which we have used dn = An/s = 1/s so that the sum can be replaced by an
integral (s is typically large enough that 7 can be treated as a continuous variable).
Numerical integration of Eq. (22) shows that R(7) depends weakly on 7. In the
range b < 7 < 11, R(7) varies from 0.640 to 0.521. Since in this range Giax
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varies from 14 to 272, thresholds for buckling will certainly occur in this range.
We therefore take R = 0.60 and the relationship between single-mode and random
imperfections in Eq. (10) becomes

On

_ _ ~1/2
o = S = 5% ths (23)

Thus, the standard deviation of white noise imperfections to be used in finite
element calculations decreases as s~/? and hence as the inverse square root of
the number of modes in the amplified range. This result occurs because we are
adding each mode as a random variable and the deviation of the sum increases
in a root-mean-square fashion. If we are to relate this deviation to experimental
results based on equivalent single-mode imperfections, as indicated in Eq. (23), we
must therefore know the bandwidth of the modes of buckling, which is part of the
solution.

This bandwidth can be estimated on the basis of the same analytical solution
used to obtain G(n, 7) in the above discussion. From the results given in Lindberg
& Florence 1987, pages 145 to 149, for representative aerospace metals at thresholds
of pulse buckling, the material property parameter in the definition of s in Egs. (13)
is given by /

1/2

2 _ <%> R (24)
FE, 3 a

In this more general theory, instantaneous stress o rather than yield stress o, is
used, and both ¢ and FE; are assumed to vary with compressive strain according
to a stress-stain relationship characterized by the yield strain and a shape factor
K. The right hand side of Eq. (24) gives the value of the material property ratio
at the final compressive hoop strain imparted by the critical impulse for buckling,
which depends on the radius-to-thickness ratio of the shell as given in the formula.
Substitution of Eq. (24) into Eq. (13) gives

BK\'* h a?
st =12 <T> - % = (384 K)W% (25)
With this value for s, Eq. (23) becomes
—1/4
o =0.264 K'/8 <%> 5, (26)

In Lindberg & Florence 1987, equivalent single-mode imperfections of 6, = 0.01 h
are shown to give reasonable agreement between experiment and theory for critical
impulses at thresholds of observable buckles. The corresponding standard deviation
of white noise imperfections from Eq. (26) for K = 15 (an appropriate value for
hardened alloys of aluminum, titanium and magnesium) and a/h = 100 is 0.0012 h.

For finite element calculations, the magnitude of imperfections to correlate the-
ory and experiment are expected to be larger than this value because of neglect in
the analytical theory of the decrease in hoop thrust with increasing buckle growth.
Thus, near and beyond the threshold of significant buckling, in the analytical
theory the buckle amplitudes grow unrealistically with increasing time and hence
increasing impulse.



RANDOM IMPERFECTIONS PROPORTIONAL TO
WALL THICKNESS AND BUCKLE WAVELENGTHS

The white noise imperfections discussed in the previous section are physically un-
satisfying because the resulting Fourier series for the imperfections does not con-
verge. It was nevertheless possible to use this form because the finite bandwidth
of the series for the buckle shapes gave truncated and hence bounded series for
buckle shapes. However, this puts a premium on specification of the bounding
mode number N to be used in calculating response with finite element methods. If
N is made conservatively large, the imperfections have large amplitude components
at short wavelengths that may be difficult to treat numerically even though they
are eventually suppressed in comparison with the dominant shape of the buckled
form, which grows with time.

It is therefore useful to explore other forms of random imperfections that are
better behaved and are based on expectations for imperfections to be found in
actual shells. Omne such form is explored in this section. Other forms may be
appropriate for specific applications in which information is available about the
manufacturing processes that introduce imperfections.

In the remainder of this section we first give example imperfection shapes to
demonstrate the difficulty with white noise imperfections discussed above. Then
we describe the proposed alternative form of random imperfections and show how
this form relates to single-mode imperfections. Example imperfection shapes with
this form are compared with the white noise shapes for the same set of random
numbers. Then the buckle shapes that result from these imperfections are given at
a sequence of increasing times, to show how the buckling process greatly modifies
the imperfection shape and increases its amplitude.

White Noise Imperfection Shapes

Fig. 2 gives imperfection shapes calculated with Eq. (1) for random coefficients
a, and [, having a Gaussian distribution and a constant standard deviation of
unity. In the left graph the series is truncated at N = 20 and in the right graph
at N = 50.

If we assume that buckling is to be investigated for a problem having the am-
plification function in Fig. 1, then the mode numbers of most concern range from
about 10 to 25, with the most amplified modes having numbers near 20. However,
in a finite element calculation we have little apriori knowledge of this function
except that its general shape will be similar to that in Fig. 1. We would there-
fore have to take N conservatively large to ensure that the significantly amplified
components are included in the calculation.

Without extensive experience, it is unlikely that one would know the dominant
wavelengths to within a factor of two, so even a value of N = 50 would not be too
conservative in a calculation for which the amplification function turns out to have
the amplified band given in Fig. 1. Comparison of the white noise imperfection
shapes in Fig. 2 for N = 20 and N = 50 shows a substantial difference in both
shape and amplitude. With N = 20, the peaks have amplitudes less than 10,
while with V = 50 peaks have amplitudes greater than 20. Also, the wavelengths



associated with these peaks are about a factor of 2.5 shorter than with N = 20.

Thus, while the buckle motion will not amplify these short wavelengths, they
tend to dominate the imperfection shape and hence require accuracy in the cal-
culation at these wavelengths. The imperfection form described in the following
paragraphs relieves this accuracy requirement while better representing physically
expected forms of imperfections.
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Figure 2: White noise imperfections truncated at N = 20 (left plot) and N = 50
(right plot).
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Figure 3: Gray noise imperfections truncated at N = 20 (left plot) and N = 50
(left plot). [The rationale for gray noise is given in next section.]

Adaptation of Imperfection Formula from Static Buckling

Near the turn of the century, hundreds of experiments were performed on static
axial buckling of columns to determine values of imperfections to be used in design
(Marston 1898, Lilly 1913 & Salmon 1921). The approach in those experiments was
the same as that used in Lindberg & Florence 1987 for dynamic pulse buckling,
namely that, because the imperfections were too small and diverse to measure,
equivalent imperfections were calculated on the basis of observed buckling defor-
mations interpreted with the theory to be used in design analysis.

Although the imperfections scattered widely, the general trend suggested use
of the following formula in column design:

r2 L 1 L
=01—+—=—(h+— 2
a1 =01+ 525 = 50 < * 12.5> 27)

10



in which a; is the coefficient of an equivalent imperfection in the half sinewave
shape sin7z /L of the Euler column of length L, r is the radius of gyration of the
cross section and c is the distance from the neutral axis to an extreme fiber. This is
Eq. (2.2.24) from Lindberg & Florence 1987. In the second expression the formula
is applied for the specific case of a rectangular column of depth h.

The essential observation used in suggesting Eq. (27) was that column imper-
fections are expected to have two components, one proportional to its depth and
the other proportional to its length. It is reasonable to take a similar approach for
pulse buckling of shells. In this case, the length is the half wavelength of each buck-
ling mode. We therefore take the standard deviation of the random imperfection
coefficients in the form

L, Ta a
U:C<h+ 12.5> = Ch <1+ 12.5n> = Ch <1+M> (28)

While this form is more physically reasonable than pure white noise, in that the
coefficients become smaller at shorter wavelengths, the constant term, proportional
to shell thickness, gives a component that is white noise and hence gives a Fourier
series for the imperfections that does not converge. It is therefore useful to replace
this expression by a function that converges while giving approximately the same
values for o as from Eq. (28) over the bandwidth of concern for pulse buckling.

One such function is

o = Bhn~V/? (29)

This is a convenient form that matches the values from Eq. (28) to within 20% and
more frequently within 10% for all shells of interest. A good match is obtained
because the exponent —1/2 is midway between the exponents 0 and —1 in Eq. (28).
Also, this exponent is the separator between imperfections series that do and do
not converge; an expression analogous to Eq. (4) shows that the terms for the
variance of the imperfection shape decrease as 1/n, which is the harmonic series.

An exact match between Eqgs. (28) and (29) is forced at the peak of the ampli-
fication function, which gives

B=Cnlf? (1 ¢ ) 30
ntf (14 g (30)
where n,, is the mode number of the most amplified mode, which from Eq. (25) is
given by

s

fler = 5= (90 KV <%>1/2 ~ 6 <%>1/2 (31)

In the last expression we have taken K = 15, for which (96 K)'/*4 = 6.16.
With this value for n,.., substitution of Eq. (30) into Eq. (29) yields the desired
expression for imperfection deviations:

o =CV6 (%)1/4 [1 + 2—14 (%)UZ] hn 1?2 (32)

Over the bandwith of significantly amplified modes, from 0.5n. to 1.5n,.., see
Fig. 1, deviations from Eq. (32) match those from Eq. (28) to within 10% for
a/h > 100. The match improves with increasing a/h. At a/h = 10, the thickest

11



shell of interest, the match is within 20%. These accuracies are far better than
our knowledge of imperfection amplidudes, so Eqgs. (28) and (32) are essentially
equivalent.

Relationship with Single-Mode Imperfections
With & now varying with n as given by Eq. (32), Eq. (4) for u2(7) becomes

where

A=0V6 (%)1/4 l1 4 i (%)1/2] h (34)

Substitution of n = ns and dn = 1/s into Eq. (33) gives

_ o [ 1
u(r) = A% [ G (n,T)dn (35)
Rt
If we relate single-mode and random imperfections by setting three times the
root-mean-square buckle deformation equal to the peak deformation with a single-
mode imperfection, as was done for Eq. (10), we obtain

3A[ "G (1) dn} — 5, Ca (36)
Jm
from which 5 .
4=
3 R (37)
where
1 I 1/2
Rir) = 0 | [ Gy dn) (39)
Gmax(T) <J 1M1

Integration to find R;(7) gave values from 0.705 to 0.605 for 7 in the range of
interest from 5 to 11. The small change in R; reflects the nearly constant shape of
the amplification function in this range. If we take Ry = 0.65, then

on
3(0.65)

= 0.516, (39)

The expression depending on a/h in the definition of A in Eq. (34) evaluates
to values from 2.51 to 4.48 for a/h in the range 20 to 100 where most of the
experiments reported in Lindberg & Florence 1987 were performed. We take a
value of 3 to solve for C' from Egs. (34) and (39), which gives

0.516, b
CV6 = =017 (40)

Assuming 6,, = 0.01 h, as was done for white noise imperfections, substitution of
Eq. (40) into Eq. (32) results in the following expression for the standard deviations
of random imperfections:

a\ 1/4 1 /an1/2 )
et — | — - /2
o = 0.0017 <h> l1 oo <h> ] hn (41)
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Figure 4: Buckling with white noise truncated at N = 50, buckle parameter s =
20.7, =0, 2, 4, 6.

When used in the analytical theory in Lindberg & Florence 1987, these devi-
ation magnitudes will result in random buckle shapes comparable in magnitude
to those for single-mode imperfections. However, as pointed out previously, the
magnitude of imperfections to be used in finite element calculations are probably
larger than these from the analytical theory because of neglect in the analytical
theory of hoop thrust reduction as the buckles grow.

Example Imperfection and Buckle Shapes

The improved behavior of random imperfection shapes with Fourier coefficients
proportional to n~'/? is demonstrated in Fig. 3. These were calculated with Eq. (1)
using coefficients from Eq. (29) with Bh = 1 and the same set of 100 random
coefficients used to calculate the truncated white noise imperfection shapes given
in Fig. 2. The truncation numbers N are also the same in both pairs of graphs, so
the sets can be compared graph by graph.

For both white and gray noise, amplitudes are higher for N = 50 than for
N = 20. However, for white noise coefficients the shape with N = 50 is dominated
by short wavelengths while for gray noise coefficients the amplitudes of the longer
wavelengths remain dominant with NV = 50. Thus, in Fig. 3 the longer wavelength
features with N = 20 are still apparent with N = 50. In a similar comparison in
Fig. 2 for white noise, the long wavelength features of the imperfection shape with
N = 20 are barely detectable in the shape with N = 50. Other comparisons can
be made for other trunctation modes with the same result.

It is also instructive to observe how the initial imperfection shape transforms
into a buckled shape under the influence of pulse buckling amplification. Fig. 4
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Figure 5: Buckling with gray noise truncated at N = 50, buckle parameter s =
20.7, =0, 2, 4, 6.

gives a series of snapshots of buckle shapes at dimensionless times 7 = 0, 2, 4 and
6. These were calculated with the imperfection shape in Fig. 2 with N = 50 using
the amplification function from Eq. (19) with s = 20.7 (the function at 7 = 6 is
given in Fig. 1). The baseline is shifted in the plots for 7 = 0, 2 and 6 to allow
all four plots to be placed in the figure. The imperfection shape, at 7 = 0, is the
same as that for N = 50 in Fig. 2 except for the scale change and o /h = 0.122%,
found from Eq. (23) with 6, = 0.01 h and s = 20.7.

The quantity plotted is the ‘total’ buckle shape, consisting of the sum of the
imperfection and the buckle deformation. This is done to illustrate that by 7 = 6
there is little evidence of the imperfection shape in the total buckle shape even
though the maximum peak has increased by only a factor of 7. The short wave-
length features essentially disappear with increasing time. At 7 = 2 and 4, there is
much short wavelength activity. By 7 = 6 this activity has ceased and a dominant
buckle form has been established.

Fig. 5 gives a similar plot for growth of the gray noise imperfections in Fig. 3
but with o = 0.32n~'/2 found from Eq. (41) with a/h = 8. The buckle shape
at 7 = 6 is virtually identical with that in Fig. 4 for white noise, except that the
amplitude is smaller because of the approximations made in deriving the coefficient
expressions in Eqs. (23) and (41). A similar comparison at 7 = 8 is given in Fig.
6. The two buckle shapes are essentially the same and are very nearly the same
as the shapes at 7 = 6. Thus, beyond 7 = 6 the main change with time is simply
an increase in the amplitude of this established shape. This occurs even though
the theory is linear. In a finite element calculation which includes plastic yielding
in the form of hinges at the buckle peaks, the wavelengths also become fixed as
time increases. Thus, this simple theory contains many of the features of a more

14



N W A O
o O o O
T T T
| |

i
VU |

—_
o o
T

4
o
T

Imperfection + Deformation, (Wi + W)/h -- %

_50 | | | | | | |
0 45 90 135 180 225 270 315 360

Angle -- Degrees

N
o
T
|

. A/\«M AN

AT

A
o
T
|

Imperfection + Deformation, (Wi + W)/h -- %

_50 | | | | | | |
0 45 90 135 180 225 270 315 360

Angle -- Degrees

Figure 6: Buckle shapes at 7 = 8 for white noise (top) and gray noise (bottom)
imperfections.
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Figure 7: Buckle shape at 7 = 8 for "black” noise, in which o /h = 1.75/n%, again
with the same set of 100 random coefficients as in the previous figures.

complete analysis.

Fig. 7 gives the buckle shape at 7 = 8 for ‘black’ noise, in which o/h =
1.75/n%, again with the same set of 100 random coefficients as in the previous
figures. With this more rapidly decreasing standard deviation, the Fourier series
for the imperfection shape converges; contributions from very short wavelength
terms become negligible (black) with increasing n. Measurements by Kirkpatrick
(personal communication from S. W. Kirkpatrick, SRI International, Menlo Park,
California) of imperfections in aluminum shells made by rolling and welding sheet
stock gave high order harmonic amplitudes that decreased at about this rate. The
coefficient 1.75 was selected so that the amplitude of the buckles are about the
same as for the white noise result in Fig. 6. There are some differences between the
buckles from white and black noise, but the overall buckle pattern, particularly of
the larger peaks, is very nearly the same for these extreme cases of noise amplitude
attenuation with increasing n.

Thus, the exact nature of the attenuation is unimportant in an analytic theory
in which any desired spatial resolution is obtained by simply including more terms
in the solution. The importance of the attenuation is in describing imperfections for
finite element analysis with a limited number of elements. Gray noise is suggested
for such use because it gives conservatively large coefficients at high mode numbers
while significantly reducing the amplitude of unimportant harmonics.

STATISTICS OF BUCKLE SHAPES

With imperfections in random form, the resulting buckle shapes are also random
and must be described statistically. The mathematical transformation from imper-
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fections to buckle shapes is too complex to allow analytical formulation of buckle
statistics even for the simple buckling theory summarized in Section 2. The single
exception is the mean wavelength, for which an explicit formula is given in Lind-
berg & Florence 1987 based on a derivation in Rice 1954. More general statistics
were therefore calculated for analytical buckle shapes by the Monte Carlo method.

The same situation is true for finite element calculations except that Monte
Carlo calculations would be much more time consuming and expensive. We there-
fore also investigated how well the statistics of buckle shapes from single buckle
calculations estimate the statistics of the universe of buckle shapes. The statistics
examined are the means and standard deviations of the wavelengths and peak-to-
peak amplitudes of the buckle shapes.

Random Number Generator

The random number generator used for these calculations (and those in Section
3) is the function random in Turbo Pascal running on an IBM PC-AT. This
function returns random numbers uniformly distributed in the interval 0, 1. Thus,
a function =, with mean value zero and uniformly distributed in the interval —1/2,
1/2 is given by

1
x = random — 5 (42)
The standard deviation of z is found from
2 Y d L 43
ol = [, 2P dr = (43)

where the probability density function p(z) = 1 for the unit interval.
From the central limit theorem, random numbers with a Gaussian distribution
are obtained by adding M values of x.

M M M
y=> xz; =) random — - (44)
i=1

i=1
The standard deviation of M independent random variables is

o2 = Mo? (45)

Yy xT

The desired random numbers with zero mean value and unit standard deviation
are therefore obtained with

MY /12

z= (% random — ?> <M> v (46)

i=1

The Gaussian distribution function in Eq. (46) was checked for M = 10 by
creating a histogram from 1000 calls to the function z. The resulting histogram
was a good approximation to a Gaussian distribution. All the calculations in the
paper were therefore made with M = 10.

17
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Figure 8: Histogram of buckle amplitudes for s = 20.7, 7 = 6 and unit standard
deviation of imperfection coefficients.

Statistics of the Universe of Buckle Shapes

Population statistics of a universe of buckle shapes were approximated by calcu-
lating 16 buckle shapes as in the upper graph in Fig. 6 with a different set of 100
random numbers for the imperfections in each case. Imperfections for this statis-
tical study were taken in white noise form with & = 1. This was done so as not
to specialize to any particular variation of Fourier coefficients with mode number
n. Although use of the n~/? variation suggested in this paper looks promising,
other forms may be proposed in the future based on knowledge or measurements
of imperfections for particular manufacturing methods. The comparisons in Figs.
6 and 7 show that the statistics will be similar for a range of amplitude variations
with n.

The statistics of peak-to-peak amplitudes were obtained by calculating both
negative-to-positive and positive-to-negative amplitude differences for all the peaks
in the 16 buckle shapes. A histogram of the resulting values is given in Fig. 8. The
histogram is sufficiently filled in that it is taken to represent the distribution of the
universe of buckle shapes. It has a fairly well-defined maximum probability near
140 units of magnitude and a finite probability at zero magnitude, reflecting the
many small wiggles seen in the buckle shapes. The average amplitude is 152 units
and the standard deviation is 83 units.

Estimates of Buckle Wave Population Statistics

The isolated vertical tic marks labeled 152 and 483 on either side at the top of
Fig. 8 are drawn at the average amplitude and at one standard deviation above

18



50

45
40
35
30
25

204

15

FREQUENCY OF OCCURANCE

10

AR Y
A AL LR R RN AN AR AR AR RN

AR R R R R R R R R TR S

R RN A RN NN

ANNNNANNNNN

SOOIV RRRNRNRRNNNSNNNNNNYY

LN S S S B S B S A A Shn S an e  p a

%@Eaaa 2. Ao
27 36
PEAK-TO-PEAK WAVELENGTH (DEGREES)

Figure 9: Histogram of buckle wavelengths for same set of results as in Fig. 8.

and below the average. The bars drawn just below the 152 and +83 tic marks give
the range of average values and standard deviations calculated for the individual
buckle shapes. These demonstrate that statistics calculated from buckle waves in
a single buckling calculation give reasonably good estimates for the statistics of
the universe of buckle waves. Thus, in finite element analyses, it appears that one
or two calculations should give good estimates for buckle statistics.

Fig. 9 gives the distribution of wavelengths for the collection of 16 buckle shapes.
The distribution has a pronounced maximum near 19 degrees. Nearly all the
wavelengths lie between 10 and 30 degrees. An explicit formula for the mean
wavelength as a function of time is given in Lindberg & Florence 1987.

CONCLUSIONS

We have shown that Fourier series with random coefficients having a Gaussian
distribution with zero mean value and standard deviation o give an imperfection
representation that leads to buckle forms similar to those observed in experiments.
For use in finite element analysis, the initial shape of the structure can be specified
as the sum of this series to an upper mode number limit N, found from existing
analytical results for similar structural parameters. A conservative distribution of
imperfection coefficients, which relaxes the accuracy required in specifying N and
the corresponding size of the finite elements while assuring participation of higher
modes, results by taking o = Chn~/? for cylindrical shells under radial impulse.
The number of buckles in typical calculations is large enough that the statis-
tics of the universe of buckle waves for the problem at hand can be estimated
to reasonable accuracy by the statistics of the waves in one or two calculations.
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The amplitude coefficient C can be found from experimental results interpreted
by closed-form theory [Eq. (41)], increased by about a factor of 3 to account for
neglect in the closed-form theory of thrust reduction from buckling deformation.
Similar random imperfection forms for more general loading and structures may
also prove useful.
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APPENDIX II...NOTATION

The symbols on the following page are used in this paper:
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Subscripts
7 =
max =
n _=

Operators

constants

material tangent modulus

amplification function

material stress-strain shape parameter
length of Euler column

sample size of uniform random numbers
number of summed modes

integral function, Eq. (22)

integral function, Eq. (38)

(with no subscript) shell radius
coefficients of cosine displacement terms
coefficients of sine displacement terms
distance from neutral axis to extreme fiber
plastic wave speed, Eq. (13)

shell wall thickness

mode number

argument parameter, Eq. (20)

radius of gyration of column section
wave number parameter, Eq. (13)

time

dimensionless displacement

radial deformation, positive inward
uniformly distributed random variable
Gaussian-distributed random variable
Gaussian-distributed random variable with zero mean value
(with no subscript) shell thickness parameter
coefficients of cosine imperfection terms
coefficients of sine imperfection terms
coefficient of single-mode imperfection
wave number

angular coordinate

material density

yield stress

standard deviation of «a,, and 3,
dimensionless time, Eq. (20)
dimensionless time, Eq. (13)

initial imperfection
maximum value of function
mode number index

differential

differentiation with respect to 6
differentiation with respect to 7
average value
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