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Abstract

The theoretical basis of two related but distinctly di®erent dynamic buckling cri-
teria are summarized with the objective of demonstrating the range of applicability
of each, so that together they cover the entire range of dynamic pulse loads from
nearly impulsive loads to step loads of in¯nite duration. The example chosen is a
cylindrical shell under elastic axial loads but the approach is applicable more gen-
erally. A critical ampli¯cation-of-imperfections criterion with a linear shell theory
is shown to be applicable for short duration loads, for which a threshold nonlinear
divergence criterion gives loads an order of magnitude too conservative. Conversely,
the linear theory is inapplicable for long duration loads, for which critical loads are
lower than the linear static buckling load because of imperfection sensitivity. In this
range the threshold nonlinear divergence criterion is used. For loads of intermedi-
ate duration, an extended critical ampli¯cation criterion is used with equations that
conservatively assume zero static buckling load but give an unchanged formula for
critical load amplitude-duration combinations.

INTRODUCTION

A critical ampli¯cation criterion has been successfully applied to calculate dynamic
pulse-buckling loads in a wide variety of structural elements (Lindberg and Florence,
1987), in each case with quite reasonable agreement with experimental loads for
thresholds of dynamic buckling. In particular, critical loads for cylindrical shells under
axial impact have been predicted for constant elastic axial stresses (Lindberg and
Herbert, 1966), sustained constant axial plastic °ow (Florence and Goodier, 1968),
and oscillating elastic axial stresses (Lindberg, Rubin and Schwer, 1987). Buckling
of cylindrical shells at elastic axial levels is very sensitive to initial imperfections.
Under static loads, this sensitivity causes large changes in critical buckling stresses
for almost imperceptible imperfections. In the present paper it is demonstrated that,
under dynamic pulse loads, imperfection sensitivity does not strongly a®ect critical
stress-duration combinations for buckling, but instead a®ects the range of stresses
over which the theory can be applied.

Imperfection sensitivity under static axial loading has an extensive literature of re-
search on the source of this sensitivity and methods of analysis. With the objective of
avoiding duplication of this research for dynamic loads of long duration (step loads),
Budiansky and Hutchinson (1964) developed a theory to relate critical dynamic loads
to static buckling loads of imperfect shells, without speci¯c reference to the imperfec-
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tions themselves. They found expressions for the ratio of dynamic-to-static buckling
loads as a function of the ratio of the static buckling load of the imperfect shell to
the classical static buckling load of the perfect shell. They then extended this idea to
pulse loads of ¯nite duration (Hutchinson and Budiansky, 1966).

The buckling criterion used by Budiansky and Hutchinson is the transition from
oscillatory motion under subcritical loads to divergent motion under buckling loads.
For typical imperfect shells (static buckling loads about one fourth the classical loads),
they found that critical step loads are about three fourths the slowly applied static
load. For rectangular pulse loads of ¯nite duration, their results were more complex,
but toward the limit of short durations the critical condition reduces, of course, to a
critical loading impulse. This is the same condition found by Lindberg and Herbert
(1966), but the impulses from the critical ampli¯cation criterion are an order of mag-
nitude larger than from the divergence criterion used by Budiansky and Hutchinson.

Roth and Klosner (1964) also found critical loads for cylindrical shells under axial
rectangular pulse loads, based on a criterion of a sudden increase in nonlinear response
amplitude, used by Budiansky and Roth (1960) for shallow spherical shells. Roth and
Klosner's critical impulse for a cylindrical shell under short duration loads was only
slightly larger than that given by Lindberg and Herbert, suggesting that, for short
duration loads, their nonlinear response amplitude change criterion was similar to the
critical ampli¯cation criterion.

In the present paper it is shown that the critical ampli¯cation criterion is the more
appropriate for pulse loads, while the threshold divergence criterion is appropriate for
step loads. An interpolation method is given for loads of intermediate duration. It
is further suggested that, with the general source of imperfection sensitivity identi-
¯ed, the critical ampli¯cation criterion can be applied by knowing only the ratio of
imperfect-to-perfect static buckling loads, just as for the threshold divergence crite-
rion.

CRITICAL AMPLIFICATION THEORY

Equations of Motion

Both the threshold divergence and critical ampli¯cation criteria are applied to
cylindrical shells by means of Donnell's equations, which in linear form are:
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In these equations, x is axial coordinate, µ is circumferential coordinate, w is radial
displacement, positive inward and measured from an unstressed initial displacement
wi, ½ is material density, E is Young's modulus, h is shell wall thickness, a is shell
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radius, D = Eh3=12(1¡ º2) is shell bending sti®ness, º is Poisson's ratio, F is Airy's
stress function for in-plane force resultants produced by the buckling deformation,
and ¹Nx is the part of the axial force resultant from the applied axial load.

With dimensionless variables de¯ned by
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Donnell's equations become
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where now
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and dots indicate di®erentiation with respect to ¿ .
With simple-support boundary conditions

w = @2w=@x2 = 0 at x = 0; L (8)

dynamic motion following sudden application of ¹Nx can be expressed by the Fourier
series
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and the initial imperfections are also expanded into the Fourier series

wi(»; ´) =
1X

m=1

1X

n=1

amn sin®m» sin ¯n´ (12)

A similar set of equations results for imperfections of the form bmn sin®m cos ¯n´.
With these expansions substituted into Donnell's equations 5{7, the equations of
motion for the modal amplitudes Wmn are

ÄWmn + k(®m; ¯n)Wmn = ®2mamn (13)

where
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The form for the multiplier in the last term of equation 14 follows from the observation
that

EhD

a2 ¹N2
x

=
1

4

µ
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¶
2

(15)

where ¾ is the axial stress from ¹Nx and

¾c =
Eh

a

1
q

3(1¡ º2)
(16)

is the classical static buckling stress, which can be found by setting k(®m; ¯n) = 0
and minimizing ¾ with respect to ®m and ¯n treated as continuous variables.

Imperfection Growth and Buckling

The solutions to modal equations of motion 13 are

Wmn(¿ )

amn
=

®2m
k(®m; ¯n)

"

1¡ cosh p¿
cos p¿

#

(17)

in which
p = jk(®m; ¯n)j1=2 (18)

The hyperbolic form is taken for k(®m; ¯n) < 0 and the trigonometric form is taken
for k(®m; ¯n) > 0. For k(®m; ¯n) = 0 the function multiplying ®2m is replaced by
¿ 2=2, but this is seldom of concern because only in rare cases do ®m; ¯n make k
precisely zero with integer values m and n. The quantity given by the right side
of equation 17 is called the \ampli¯cation function," since it de¯nes the amount by
which the imperfection coe±cients amn are ampli¯ed by dynamic motion.

If one were to use a threshold divergence criterion for this linear dynamic buckling
motion, the dynamic buckling load would be simply the static buckling load, since it
separates oscillatory motion from divergent motion. However, for ¯nite duration pulse
loads this criterion is far too conservative, as shown by the many examples of pulse
buckling of structural elements in Lindberg and Florence (1987), and in particular for
the cylindrical shell under axial loading (Lindberg and Herbert, 1966). With ¯nite
durations, loads with amplitudes far in excess of static buckling loads can be safely
applied as long as the pulse duration is short enough that the magnitude of the motion
remains acceptable. Experiments on a wide variety of structural elements have shown
that motion is acceptably small if the ampli¯cation is less than about 25.

Lindberg and Herbert (1966) evaluated equation 17 over the range ®m; ¯n < 2 of
signi¯cant ampli¯cations, for ¿ ranging from 0 to 12. The most ampli¯ed mode is an
axisymmetric mode with axial half-wavelength `x ¼

p
2 `0, where `0 = ¼

p
ah=[12(1¡

º2)]1=4 is the axisymmetric classical static buckle half-wavelength. This mode achieves
an ampli¯cation of 25 at ¿ ranging only from 6 to 8 for ¾=¾c ranging from 1.1 to 1.
Also, substantial growth occurs in hundreds of modes for thin shells. A statistical
analysis showed that with uniformly distributed initial imperfections amn, the most
probable wavelengths in the buckled form have an axial half-wavelength `x ¼

p
2 `0

and a circumferential-to-axial wavelength ratio of `µ=`x ¼ 3 at these buckling times.
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Measurements of permanent buckled forms and high-speed motion pictures showed
wavelengths in good agreement with these predictions, and that at ¿ = 7 buckles were
just perceptable. It was therefore suggested that ¿ = 7 be taken as a conservative
buckling criterion, based on an ampli¯cation of about 25, essentially independent of
¾=¾c but with ¾=¾c > 1. Later in the present paper it is suggested that the latter
condition can be relaxed to ¾=¾ds > 1, where ¾ds is the dynamic buckling load of the
imperfect shell under step loading, from the threshold divergence criterion, for which
¾ds=¾s < 1 and ¾s is the static buckling stress of the imperfect shell.

From the de¯nition of ¿ in equation 4, the critical condition ¿ = 7 at t = T gives

¹NDT = 7(½hD)1=2 (19)

or

¾dT =
7p
12

½ch ¼ 2½ch (20)

where c =
q

E=½(1¡ º2) is the membrane wave speed in the shell, ¹ND is the critical
dynamic resultant force at duration T , and ¾d is the corresponding dynamic stress.
Thus, threshold buckling deformations occur at a critical impulse imparted by the
axial load. Also, because of the insensitivity to ¾=¾c noted previously, ¾dT does not
depend on a.

NONLINEAR DIVERGENCE THEORY

Equations of Motion

The initial work of Budiansky and Hutchinson (1964) focused on buckling from
step loads, which is essentially a dynamic perturbation of static buckling since the
load is maintained inde¯nitely. Thus, they used Koiter's (1963) theory of elastic sta-
bility and postbuckling behavior to capture the transition from small deformations
at subcritical loads to large deformations when a critical buckling load is exceeded,
just as for static buckling of imperfection sensitive shells. With a nonlinear form of
Donnell's equations, they focused on analysis of motion in two modes, with ³1 taken
as the amplitude of motion in the axisymmetric classical buckling mode and ³2 taken
as the amplitude of a nonaxisymmetric classical buckling mode with equal axial and
circumferential wavelengths [half wavelengths `x = `µ = 2`0; see for example Lindberg
and Florence (1987) pp. 284-285]. Experiments reported by Almroth, Holmes and
Brush (1964) demonstrate that initial buckling indeed occurs in this mode for step
loading, produced in these experiments by a small lateral perturbation impulse ap-
plied to a statically loaded shell. (A suddenly introduced additional \imperfection" is
not the same as a suddenly applied load, but the resulting dominant response modes
are the same.)

With ³1 and ³2 expressed as fractions of the wall thickness, the equations of motion
were found to be

1

4
Ä³1 +

Ã

1¡ ¸

¸C

!

³1 ¡
3b

32
³2
2

=
¸

¸C
¹³1 (21)

5



Ä³2 +

Ã

1¡ ¸

¸C

!

³2 ¡
3b

2
³1³2 =

¸

¸C
¹³2 (22)

where ¸ is the applied axial stress, ¸C is the classical static buckling stress given by
equation 16, b = [3(1¡ º2)]1=2, and ¹³1 and ¹³2 are imperfections, also as fractions of
the wall thickness. (The notation ³ and b is used here rather than » and c as in
the Budiansky and Hutchinson papers, because of other use of these symbols in the
present paper.) Finally, here dots now indicate di®erentiation with respect to ¿ = !2t,
where the vibration frequencies associated with the two modes in the unloaded shell
are

!1 =
p

2 c=a and !2 = c=a
p

2 (23)

which can be found from equation 13 with ¾ = 0 and wave numbers ®m and ¯n
corresponding to the half wavelengths given above for these modes.

Numerical analysis showed that minimum dynamic buckling loads based on a
threshold divergence criterion (discussed more explicitly in the next subsection) oc-
cured with ¹³1 = 0, but nevertheless with ³1 6= 0 because of the nonlinear coupling.
Solutions to a good approximation for this case were obtained by neglecting the in-
ertia term Ä³1=4 in equation 21, which allows ³1 to be expressed in terms of ³2

2
from

equation 21 and substituted into equation 22 to obtain the single nonlinear equation

Äz2 + (1¡ ¸=¸C)z2 ¡
"

9b2¹³2
2

64(1¡ ¸=¸C)

#

z3
2

= ¸=¸C (24)

where z2 = ³2=¹³2.

Hinged-Rod Model

Budiansky and Hutchinson further observed that the form of equation 24 is very
similar to that of the two rigid rod, three-hinge column model of von K¶arm¶an, Dunn
and Tsien (1940), with a mass and lateral cubic-softening spring attached to the
central hinge. The mass is M , the length of each rod is Lr, and the nonlinear spring
force from lateral displacement u is

F = KLr(³ ¡B³3); B > 0 (25)

With notation analogous to that for the shell, namely ³ = u=Lr, and P and PC = KLr
denoting axial force and zero-imperfection buckling load, respectively, the equation
of motion is

Äz + (1¡ P=PC)z ¡B¹³2 z3 = P=PC (26)

where z = ³=¹³ and dots now indicate di®erentiation with respect to t
q

K=M .

For the imperfect structure, with ¹³ 6= 0, the equilibrium displacement increases
with increasing load to a maximum and then decreases with further increases in
load. States beyond the maximum are therefore unstable, and the maximum is the
buckling load PS of the imperfect structure. This load is found by omitting the Äz
term in equation 26 and setting dP=dz = 0, which yields

(1¡ PS=PC)3=2 =
3
p

3

2
B1=2 ¹³(PS=PC) (27)
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The dynamic buckling load for step loading with z = _z = 0 at t = 0 is found
by ¯rst using the identity Äz = _z d _z=dz so that equation 26 can be integrated once to
obtain

_z2 + (1¡ P=PC)z2 ¡ 1

2
B¹³2 z4 = 2(P=PC)z (28)

At loads below the dynamic buckling load, the steady-state motion is periodic and
equation 28 de¯nes its limit cycle in phase space z; _z. The maximum value, zmax, of
this limit cycle occurs when _z = 0, which gives

(1¡ P=PC)z2
max

¡ 1

2
B¹³2 z4

max
= 2(P=PC)zmax (29)

The dynamic buckling load PD is de¯ned as the load for which the amplitude (and
period) of this limit cycle is in¯nite, so the motion diverges rather than approaching
a limit cycle. This occurs under the condition dP=dzmax = 0 applied to equation 29,
with the result

(1¡ PD=PC)3=2 =
3
p

6

2
B1=2¹³(PD=PC) (30)

A key feature of this simple model is that the imperfection parameter B1=2¹³2 can
be eliminated between equations 27 and 30, giving a relationship between the static
and dynamic buckling loads with no explicit dependence on the imperfections. The
result is

PD=PS =

p
2

2

Ã
1¡ PD=PC
1¡ PS=PC

!
3=2

(31)

By a similar procedure, the static buckling load from equation 24 for the cylindrical
shell is given by

(1¡ ¸S=¸C)2 =

"
9
p

3 b

16
j¹³2j

#

(¸S=¸C) (32)

and the dynamic buckling load is given by

¸D=¸S =

p
2

2

Ã
1¡ ¸D=¸C
1¡ ¸S=¸C

!2
(33)

Plots in Budiansky and Hutchinson (1964) of PD=PS vs. PS=PC from equation 31
and ¸D=¸S vs. ¸S=¸C from equation 33 are very similar, the only di®erence being
slightly more curvature in the plot from equation 33 than from equation 31 because
of the larger exponent. Similar results were also found for the rigid-rod model with
a quadratic- rather than cubic-softening spring, which gives the same exponent as in
equation 33 but a coe±cient 3=4 = 0:75 in place of

p
2=2 = 0:707.

Critical Finite Duration Loads

In Hutchinson and Budiansky (1966), the equations of motion of the rigid-rod
model for both the quadratic- and cubic-softening springs were integrated numerically
for rectangular and triangular (sudden jump in load followed by linear decay to zero)
¯nite-duration pulse loads. For each model and pulse shape, they again gave plots of
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Figure 1: Conservative dynamic buckling estimates (¸S=¸C = 0) from the threshold
divergence theory, rectangular loading.

¸D=¸S vs. ¸S=¸C but with pulse duration as a parameter, found by use of a divergence
threshold criterion just as for step loads. These curves showed a rapid increase in
¯nite duration critical loads with ¸S=¸C increasing beyond about 0.2, suggesting a
high sensitivity of critical dynamic loads to imperfections. In the present paper it is
shown that, with the more appropriate critical ampli¯cation criterion, critical short
pulse loads are insensitive to imperfections for any value of ¸S=¸C .

For conservative practical application, curves were given of ¸D=¸S vs. T0=T for the
limiting case of imperfect shells with ¸S=¸C ! 0, based on the observation that for
¸S=¸C < 0:2 critical dynamic load ratios ¸D=¸S are weakly dependent on ¸S=¸C . The
time T0 is the vibration period of the dynamic buckling mode in the absence of loading,
and T is the rectangular pulse duration. These are repeated here in Figure 1. The
curves approach the static results of Budiansky and Hutchinson (1964) as T0=T ! 0,
and approach straight lines toward the impulsive loading limit T0=T !1.

For the cubic model, which more closely approximates the behavior of the cylin-
drical shell equation (24), a straight line approximation ¸D=¸S = T0=T can be used
to good accuracy for T0=T > 3. With T0 = 2¼=!2, and !2 = c=a

p
2 from equa-

tion 23 and ¾c = Eh=a
q

3(1¡ º2) from equation 16, this line gives the following
simple formula for critical dynamic axial buckling stress

¾d = ¼
µ

2

3

¶3=2 ½ch

T
¢ ¾s
¾c

(34)

or
¾dT = 1:71 ½ch(¾s=¾c) (35)
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For a typical static buckling load ratio ¾s=¾c ¼ 0:25, equation 35 gives ¾dT = 0:43½ch.
If one uses the symmetric mode period from !1 in equation 23 as the more conser-
vative estimate suggested by Hutchinson and Budiansky (1966), then the coe±cient
in equation 35 becomes 1:71=2 = 0:855. With this more conservative buckling mode
period, ¾dT = 0:21 ½ch. These are in exactly the same form as given by equation 20
from the ampli¯cation criterion but with a coe±cient an order of magnitude smaller.
If one were to use for T0 the period from the most ampli¯ed mode, a symmetric mode
with half wavelength `x = `0=

p
2, the coe±cient would be even smaller.

CHOICES OF BUCKLING CRITERIA

The excellent agreement between experimental results and critical loads based
on a critical ampli¯cation criterion suggests that for relatively short ¯nite duration
loads this criterion is more appropriate than the threshold divergence criterion. Fur-
thermore, the formula ¾d = 2 ½ch is also the formula for a bar or °at plate, which
corresponds to a!1. Thus, there is no reason to suspect that the critical ampli¯-
cation formula is unconservative because of any peculiarity of complex nonlinear shell
response; the ¯nite radius of the shell makes the shell \sti®er" than the plate. In the
physical buckling process, a sudden-jump dynamic load is applied by impact, and
divergent °exural motion takes place only while the stress pulse is maintained. If the
shell has a free boundary condition at the opposite end, as in Lindberg and Herbert
(1966), then following the compressive pulse the stress jumps to a tensile stress equal
to the initial compression and not to zero as assumed in Hutchinson and Budiansky
(1966).

Furthermore, as time proceeds, axial waves continue to reverberate between one
end of the shell and the other. For the case with one end impacted and ¯xed to a
heavy mass and the other end free, these reverberations result in alternating compres-
sive and tensile pulses near the impacted end of the shell, where the °exural motion is
largest. Lindberg, Rubin and Schwer (1987) showed that further buckling occurs dur-
ing the ¯rst two or three compressive pulses, interspersed by oscillatory motion during
the tensile pulses. Also, the corresponding change of the equations of motion between
hyperbolic and elliptic forms results in buckle growth ¯xed in space during the com-
pressive pulses and bending wave propagation away from the impacted end during
the tensile pulses. This spread in bending energy during the tensile pulses, together
with the ¯nite membrane energy available in the initial compression wave, limits the
amount of buckle growth from later compressive pulses such that the single-pulse
formula in equation 20 still gives a reasonable estimate for critical impact loading,
with T taken as the single round trip transit time of an axial stress wave.

If the shell has an axially ¯xed boundary at the end opposite the impact, then
the compressive stress increases with each axial stress wave reverberation between
the impacted and ¯xed end, resulting eventually in long duration dynamic loading.
This is closer to the situation analyzed in Budiansky and Hutchinson (1964), but no
attempt was made there to de¯ne how one would obtain a sudden increase in load to
a ¯xed load of constant magnitude. The implicit assumption is that the analyst is
seeking a conservative estimate for a dynamically applied load and that a step load
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is a conservative idealization of actual loading through a short series of axial wave
reverberations. Thus, in these cases the threshold divergence criterion is appropriate.

loads2.figToPc / TPs
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Figure 2: Dynamic buckling loads for cylindrical shells under rectangular pulse loads
of duration T (Here, T0 is the unloaded vibration period of the classical axisymmetric
buckling mode.)

CRITERIA FOR INTERMEDIATE PULSE
DURATIONS

In place of Figure 1, the combined criteria scheme given in Figure 2 is suggested.
The short-dashed line (and the solid extension superimposed on it) is from the critical
ampli¯cation criterion, given in the form

PD
PS

=

p
6

¼

µ
T0
T

¶µ
PC
PS

¶
(36)

which is equation 20 with T0 taken as the free vibration period
p

2 ¼a=c of the ax-
isymmetric classical buckling mode. (The extension of applicability to PD=PC < 1
is made with the conservative assumption that for pulse buckling one can consider
that 1=a = 0, so that an e®ective P e®

C ! 0, as discussed more fully in the following
paragraphs.) The long-dashed and dash-dot curves are from the threshold divergence
criterion for imperfections such that PS=PC = 0:25 and 0.50, respectively. These are
essentially the cubic model curve from Figure 1 with the T0=T abscissa stretched out
to the new abscissa de¯nition in Figure 2, but with a slight increase in PD=PS because
of the e®ect of PS=PC as given in Hutchinson and Budiansky (1966).
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The combined criteria curve is the solid curve, taken as the upper envelope of the
two criteria because each criterion is conservative. This solid curve consists essentially
of the critical ampli¯cation curve for PD greater than the step buckling load PD=PS =p

2=2 given by equation 31 (or equation 33) for PS=PC ! 0. For longer pulse durations
(smaller T0=T ), this straight line is terminated and the critical load is taken as the
conservative value PD=PS =

p
2=2 from the step-load theory. For common shells

in which PS=PC ¼ 0:25, the corner of the resulting plot occurs at a pulse duration
T ¼ 4T0. For a one meter diameter shell, T ¼ 4

p
2¼(1 m)=5000 m/s = 0.00355 s.

For values of T0PC=TPS \near" but greater than the intersection point 0.907,
the dynamic-to-static classical buckling load ratio PD=PC = (PD=PS)(PS=PC) is less
than 1 but lies on the critical ampli¯cation portion of the plot in Figure 2. For
example, with PS=PC = 0:25, PD=PC < 1 for T0PC=TPS < 5:2. In this range, the
roots k(®m; ¯n) from equation 14 are positive and response is oscillatory rather than
divergent. In this range we appeal to the nonlinear equations of motion 21 and 22
which, by de¯nition of PS=PC in equation 32, give unstable motion for all points on
the plot in Figure 2. However, we continue to use ¾dT calculated on the basis of a
critical ampli¯cation rather than threshold divergence, which has been shown to be
too conservative. One method to visualize this approach is to conservatively take
¾c=¾ = 0 in equation 14, which as mentioned previously leads to the same critical
impulse formula ¾dT = 2 ½ch as for ¯nite ¾c.

Beyond this appeal to the nonlinear equations of motion, there are two other
physical processes that result in divergent motion for ¾=¾c < 1. The ¯rst is the quasi-
nonlinearity of an increase in the local radius of curvature a because of imperfections
in modes with wavelengths longer than for the dynamic modes of response. From
equation 16, this increase results in a local decrease in ¾c over portions of the shell
where imperfections so combine. Calculations of curvature changes with imperfection
amplitudes given in Arbocz (1982) give static buckling load reductions of 10 to 20%
just from this e®ect. The basis of these calculations and comparisons of buckling load
reductions from nonlinear e®ects (equation 32) and from curvature changes are given
in the Appendix.

The second additional source of divergent motion for ¾=¾c < 1 is from hoop
stresses produced by the Poisson e®ect for dynamic loading. Even small hoop stresses
result in divergent motion. For the shell with a=h = 500, L=2a = 1:62 in Lindberg,
Rubin and Schwer (1987), calculations there showed that the Poisson e®ect reduced
the critical load separating oscillatory from divergent motion to ¾cr=¾c = 0:204, for
the m = 1, n = 4 mode. However, these hoop stresses are quickly relieved because the
shell is free to expand. The duration of the initial hoop stress pulse for impact loading
is the quarter period ¼a=2c of the breathing mode. The value of ¿ with ¹Nµ = º ¹Nx for
this period and º = 0:3 is 0:98 ¾=¾c, so initial growth from the Poisson e®ect is small.
Nevertheless, for the multi-pulse loading in Lindberg, Rubin and Schwer (1987), the
duration of the next compressive swing of the hoop mode is the half period. Strain
measurements for an impact load ¾=¾c = 0:87 showed both axial and circumferential
°exural growth during the second circumferential compressive pulse.
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SUMMARY AND CONCLUSIONS

A linear critical ampli¯cation criterion applied to dynamic buckling from pulse
loads gives conservative estimates for combinations of stress amplitude and duration
that can be safely applied with only modest °exural motion. A nonlinear threshold
divergence criterion applied to these same pulse loads gives amplitude-duration com-
binations an order of magnitude less than from the critical ampli¯cation criterion.
The latter criterion is therefore overly conservative for these relatively short pulse
loads. Conversely, for long duration loads the linear critical ampli¯cation criterion
is unconservative because linear divergence and hence buckle growth occurs only for
¾=¾c > 1. For long duration loads the nonlinear threshold divergence criterion is ap-
propriate. For loads of intermediate duration the linear critical ampli¯cation criterion
is made conservative (but not as conservative as the nonlinear threshold divergence
criterion) by letting ¾c = 0 in the equations of motion, which allows the formula from
this criterion to be applied to all loads with ¾=¾ds > 1, where ¾ds is the dynamic
buckling load from the nonlinear threshold divergence criterion for step loads. The
two criteria then give dynamic buckling loads that are not overly conservative over the
entire range of pulse durations for which critical stresses are elastic. Furthermore, no
speci¯c reference is made to imperfections in either dynamic theory, so imperfection
sensitivity need be investigated in detail only for static buckling.
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APPENDIX

Static buckling loads are reduced by the combined e®ects of imperfections and
nonlinearities, such as given by equation 32, and also by a direct change in the
local curvature of the shell caused by imperfections. Since the latter allows straight-
forward use of the critical ampli¯cation criterion for ¾ < ¾c, it is useful to explore
the magnitude of both mechanisms of static buckling load reduction.
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Figure 3: Static buckling load reduction caused by nonlinear mode-coupling with
imperfections in the square classical buckle mode.

Figure 3 gives the static buckling load reduction from imperfections in the square
classical buckle mode, calculated from equation 32. The buckling load decreases
abruptly for imperfections only a few percent of the wall thickness, and then decreases
more slowly for larger imperfections. A reduction to 30% of the classical buckling load
would require an imperfection equal to the wall thickness for this limited theory.
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Reductions from curvature change are not as precipitous as for nonlinear response,
but the reductions continue steadily with large imperfections rather than tapering o®
as for nonlinear response, so if imperfections are a substantial fraction of the wall
thickness (crudely made shells, or shells damaged in service) the curvature change
could become the dominant e®ect of imperfections.

The local curvature of the imperfect shell is given by

1

as(x; µ)
=

1

a
+

wi
a2

+
@2wi
a2@µ2

(A-1)

For this purpose, it is convenient to express the initial imperfections in the form

wi(x; µ) = a
1X

m=1

1X

n=1

°mn sin
m¼x

L
sin(nµ + Án) (A-2)

where °mn = (a2mn+b2mn)
1=2=a and Án is the phase angle of the nth mode imperfection.

With the wi=a
2 term neglected as small, equation A-1 with equation A-2 gives

1

as
=

1

a
¡ 1

a

1X

m=1

1X

n=1

n2°mn sin
m¼x

L
sin(nµ + Án) (A-3)

Consider a speci¯c location some distance from the end of the shell to avoid the
complexity of summing over m, and then replace °mn by ¹°n. Also, from equation 16,
the local static buckling load is ¾s=¾c = a=as, so

¾s
¾c

= 1¡
N=2X

n=1

n2¹°n cos(nµ + Án) (A-4)

With static buckling in the square classical mode having n = N , imperfection
modes up to only half this number are included in the ¯nal sum expression, to ensure
that the local curvature encompasses a buckle. The half wavelength at n = N is 2`0,
so

¼a

N
= 2¼

p
ah [12(1¡ º2)]1=4 (A-5)

or, with º = 0:3,

N = 0:91
q
a=h (A-6)

If one assumes that the imperfections are introduced by random processes, the phase
angles Án can be taken as random and uniformly distributed. The mean value of the
curvature change is therefore the root-mean-square of the coe±cients in equation A-4.
Somewhere on the shell the curvature change will be as large as about three times
this value, so

¾s
¾c

¯̄
¯̄
min

¼ 1¡ 3

2

4
N=2X

n=1

(n2¹°n)
2

3

5
1=2

(A-7)

Data from Arbocz (1982) suggests that values for ¹°n can be approximated by
¹°n = A=n, where A is about 0.0015. The formula applies only for n > 8, below which
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Figure 4: Static buckling load reduction caused by local curvature reductions from
modal imperfections varying as 1=n.

imperfections are nearly constant, but since ¹°n is multiplied by n2 in equation A-7
and N=2 À 8 for the thin shells discussed here, this cuto® is neglected for simplicity.
Then, with ¹°n = A=n, equation A-7 becomes

¾s
¾c

¯̄
¯̄
min

¼ 1¡ 3A

"
M(M + 1)(2M + 1)

6

#1=2
(A-8)

in which the expression under the root is the sum of n2 to M = N=2. For a=h = 1000,
N = 30 and ¾s=¾c = 0:84 for A = 0:0015. Thus, for shells of the type described in
Arbocz (1982), reductions in buckling loads of about 10 to 20% are expected from local
curvature changes. From equations A-6 and A-7, this reduction varies as (a=h)1=2.

If imperfections are as large as required for substantial buckling load reduction
in Figure 3 from nonlinear e®ects, reductions from curvature changes are also sub-
stantial. This is shown in Figure 4, which was constructed by again taking a 1=n
variation of imperfection amplitudes and summing to N=2, but with A = N¹°N ,
where ¹°N = ¹³2h=a and ¹³2 is the value of the abscissa wiN=h in Figure 3. In evaluating
equation A-8 for this plot, the 3-sigma factor was omitted, to be reasonably consistent
with the e®ective value of ¹³2 in Figure 3 being the highest local value for n = N, so
¹³2 already contains such a factor. Although this necessarily is a crude comparison
because of the vagaries of imperfections, it is reasonable to conclude that for large
imperfections curvature change e®ects must be considered in addition to nonlinear
e®ects.
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